|           | OrigamiSat-1                         |  |  |  |  |  |  |
|-----------|--------------------------------------|--|--|--|--|--|--|
| FN        | FM Down Link Data Format             |  |  |  |  |  |  |
|           | (English version)                    |  |  |  |  |  |  |
|           |                                      |  |  |  |  |  |  |
| Document# | OP-S1-0115 Revision Ver. 1.3         |  |  |  |  |  |  |
| Date      | 2019/01/11, revised on 2019/01/13    |  |  |  |  |  |  |
| Name      | Tokyo Tech OrigamiSat-1 project team |  |  |  |  |  |  |



Revision history

| Date       | Version  | Contents                                        |
|------------|----------|-------------------------------------------------|
| 2019/01/09 | 1.0, 1.1 | Translated from Japanese document OP-S1-0110,   |
|            |          | ver. 2.3. (Sakamoto, Kurosaki)                  |
| 2019/01/17 | 1.2      | Revised based on OP-S1-0110 (Japanese version), |
|            |          | version 2.6.                                    |
|            |          | - Mission data formats are added.               |
|            |          | - IMU calculation equation is corrected.        |
|            |          | Updates are shown in red.                       |
| 2019/01/18 | 1.3      | Eqs. (10) and (11) are corrected.               |
|            |          |                                                 |

#### 1. Overview

This document specifies the FM (Frequency Modulation) downlink data format for 3U Cubesat OrigamiSat-1 (JS1YAX).

### 2. Data format

The overview of FM downlink data is shown in Table 1.

| Item          | Detail                                        |
|---------------|-----------------------------------------------|
| Modulation    | AFSK1200bps (NRZL code)                       |
| Protocol      | AX.25                                         |
| Data contents | (I) HK <sup>1</sup> data (size: 122 byte)     |
|               | (II) Mission data                             |
|               | - Picture data (size: several kbyte)          |
|               | - IMU <sup>2</sup> data (size: several kbyte) |
|               | - Thin-film solar cell I-V data (size: 8      |
|               | byte)                                         |
|               | - Extensible mast encoder values              |
|               | (size: several bytes)                         |
|               | (III) Echo back (size: 32 byte)               |
| Call sign     | "JQ1YCZ" (Tokyo Tech ground station)          |
|               | "JS1YAX" (OrigamiSat-1 satellite)             |

Table 1 FM downlink data overview

OrigamiSat-1 carries out FM packet communication based on AX25 protocol.

#### 2.1. Data format details

There are four kinds of data formats. (I) HK data and (II) Mission data correspond "Data format 1." And, (III) Echo back is described as "Data format 2."

### 2.1.1. Data format 1 ((I) HK data & (II) Mission data)

Overview of "Data format 1" is shown in Table 2. Data is divided into 32 byte size and each is transmitted from the satellite. However, size of the last packet is the reminder left after the size of entire data is divided by 32 byte.

Each downlink data has a packet number before the data. The packet number is a sequential serial number presented by 3 byte hexadecimal number. Same packets are downlinked repeatedly for the "X" times specified where "X" is determined by a command

<sup>&</sup>lt;sup>1</sup> HK: House Keeping data (data to monitor satellite conditions)

<sup>&</sup>lt;sup>2</sup> IMU: Inertial measurement unit (measures acceleration and angular velocity in 3 axes (x, y, z)).

from the ground station. The next data downlinked is started after the prescribed repetition.

|      |           | -    | ao10 1  |      | ava 10. |      | -            |      |      |   |          |
|------|-----------|------|---------|------|---------|------|--------------|------|------|---|----------|
|      |           | Pac  | ket nur | nber | HK      | data | or Picture d | lata |      | _ |          |
| Flor | Call sign | 001  | 001     | 001  |         | DAT  | A(32byte)    |      | Flag |   | Repeated |
| riag | +control  | 0x01 | 0x01    | 0x01 | #0      | #1   | • • •        | #31  | гiag |   | X times  |
|      |           |      |         |      |         |      |              |      |      |   |          |

| El   | Call sign | 009  | 009  | 009  |     | DAT | A(32byte) |     | El   | Repeated |
|------|-----------|------|------|------|-----|-----|-----------|-----|------|----------|
| Flag | +control  | 0x02 | 0x02 | 0x02 | #32 | #33 | • • •     | #63 | Flag | X times  |

| El a a | Call sign | 002  | 002  | 002  | DATA(32byte) |     |       |     | El - a | Repeated |
|--------|-----------|------|------|------|--------------|-----|-------|-----|--------|----------|
| Flag   | +control  | 0x03 | 0x03 | 0x03 | #64          | #65 | • • • | #95 | Flag   | X times  |

| Flar | Call sign | N  | N  | N N |    | DAT | A(32byte) |    | El   | Repeated |
|------|-----------|----|----|-----|----|-----|-----------|----|------|----------|
| Flag | +control  | IN | IN | IN  | ## | ##  | • • •     | ## | Flag | X times  |

### 2.1.2. Data format 2 ((III) Echo back)

"Echo back" is 32 byte data downlinked for reception confirmation, just after an uplink command is transmitted from the Tokyo Tech ground station to the satellite. Echo back's data format is shown in Table 3. Echo back is also repeated for "Y" times where Y is determined by an uplink command.

| Table 3   FM Data format 2 (Echo back) |           |    |     |            |     |      |          |
|----------------------------------------|-----------|----|-----|------------|-----|------|----------|
|                                        |           |    | Ec  | cho back   |     |      |          |
|                                        | Call sign |    | DAT | TA(32byte) |     | T.I. | Repeated |
| Flag                                   | +control  | #0 | #1  | • • •      | #31 | Flag | Y times  |

# 2.2. Data distinction method

Figure 1 shows how (I) HK data, (II) Mission data, and (III) echo back, can be distinguished from each other.



Figure 1 Method to distinguish data format

# 3. Data contents in "Data format 1"

Telemetry data has two data formats: (I) HK (housekeeping) data, and (II) Mission data.

### 3.1. HK data downlink

HK data is 122 byte in total. The contents of HK data is shown in Table 4. When there was an error in reading data from the satellite memory (EEPROM), a value becomes 0xFF. And all data are <u>big-endian</u>.

Each data items are explained in detail in the subsections below. The configuration of satellite components, such as EPS, OBC, and TX/RX is shown in Figure 2.

| 説明の項目  | byte    | 内容                           | byte 数 |
|--------|---------|------------------------------|--------|
| 3.1.1  | #0      | Latest executed ID (OBC)     | 1      |
| 3.1.2  | #1      | OBC command status           | 1      |
| 3.1.3  | #2-#7   | Data obtained time           | 6      |
| 3.1.4  | #8-#11  | Battery voltage and current  | 4      |
| 3.1.5  | #12     | Battery status               | 1      |
| 3.1.6  | #13-#14 | EPS switch status            | 2      |
| 3.1.7  | #15     | EPS bus status               | 1      |
| 3.1.8  | #16     | Stellate mode                | 1      |
| 3.1.9  | #17-#20 | SAP voltage and current      | 4      |
| 3.1.10 | #21-#30 | SAP 1-5 generated power      | 10     |
| 3.1.11 | #31-#38 | SAP 1~4 current              | 8      |
| 3.1.12 | #39-#54 | Temperature                  | 16     |
| 3.1.13 | #55-#60 | Acceleration X~Z             | 6      |
| 3.1.14 | #61-#66 | Angular velocity X~Z         | 6      |
| 3.1.15 | #67     | Raspberry Pi latest executed | 1      |

Table 4 HK downlink data format

|        |           | command ID                       |     |
|--------|-----------|----------------------------------|-----|
| 3.1.16 | #68       | Raspberry Pi's mode, command     | 1   |
|        |           | execution status, LED status     |     |
| 3.1.17 | #69-#100  | EPS switch 1-10 voltage, current | 32  |
| 3.1.18 | #101-#104 | EPS 3.3V BUS voltage, current    | 4   |
| 3.1.19 | #105-#108 | EPS 5V BUS voltage, current      | 4   |
| 3.1.20 | #109-#112 | EPS 12V BUS voltage, current     | 4   |
| 3.1.21 | #113-#118 | BCR1-3 voltage                   | 6   |
| 3.1.22 | #119-#120 | SAP 5 current                    | 2   |
| 3.1.23 | #121      | 5.8GHz 12V voltage               | 1   |
| Total  |           |                                  | 122 |



Figure 2 OrigamiSat-1 configuration

### 3.1.1. Latest executed command ID (OBC)

Latest executed command ID shows the final command ID executed by OBC.

### 3.1.2. OBC command status

"OBC command status" shows the results of OBC's command execution. Table 5 shows the values and respective contents.

| エラーステータス         | エラー内容                                           |
|------------------|-------------------------------------------------|
| 0x00             | Normal                                          |
| 0x02             | SD card processing error (undefined parameter)  |
| 0x03             | SD card processing error (file open)            |
| 0x04             | SD card processing error (too many parameters)  |
| 0x05             | SD card processing error (I2C)                  |
| 0x0F             | Other error                                     |
| 0x3A             | 5.8GHz com module enable/disable check, enable  |
| 0x55             | 5.8GHz com module enable/disable check, disable |
| 0xF0             | Time out error                                  |
| 0xF2             | Command format error                            |
| 0xF3             | EEPROM address page error                       |
| 0xF4             | Over flow error                                 |
| $0 \mathrm{xF5}$ | Status error of module                          |
| 0xF6             | File open error                                 |
| 0xF8             | Undefined parameter error                       |
| 0xFC             | Too many parameter error                        |

Table 5 Values of OBC command status

# 3.1.3. Time obtained data

The time that shows when obtained the HK data has the format in Table 6. Each value is 1 byte.

| byte | 内容                                | byte 数 | 値           |
|------|-----------------------------------|--------|-------------|
| #2   | Data obtained time – Year (last 2 | 1      | 0x00 - 0xFF |
|      | digits of A.D.)                   |        |             |
| #3   | Data obtained time – Month        | 1      | 0x00 - 0x0C |
| #4   | Data obtained time – Day          | 1      | 0x00 - 0x1F |
| #5   | Data obtained time – Hour         | 1      | 0x00 - 0x17 |
| #6   | Data obtained time – Minute       | 1      | 0x00 - 0x3B |
| #7   | Data obtained time – Second       | 1      | 0x00 - 0x3D |

Table 6Data obtained time

### 3.1.4. Battery voltage and current

| Table / Battery voltage and curren | Table 7 | Battery | voltage | and | curren |
|------------------------------------|---------|---------|---------|-----|--------|
|------------------------------------|---------|---------|---------|-----|--------|

| Number | byte    | 内容              | byte 数 |
|--------|---------|-----------------|--------|
| (i)    | #8-#9   | Battery voltage | 2      |
| (ii)   | #10-#11 | Battery current | 2      |

# (i) Battery voltage

Battery voltage value is calculated by Eq. (1). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA". (The same process is also required in (ii).)

$$Voltage [V] = 0.009971 \times DATA$$
(1)

(ii) Battery current

Battery current value is calculated by Eq. (2).

$$Current [A] = 0.005237 \times DATA$$
(2)

#### 3.1.5. Battery status

Battery status monitors the voltage and current of the battery. "0" is normal, and "1" shows error, as shown in Table 7.

Table 8Battery status

| 7bit(MSB) | 6bit | 5bit | 4bit | 3bit | 2bit | 1bit            | Obit (LSB)      |
|-----------|------|------|------|------|------|-----------------|-----------------|
|           |      |      |      |      |      | Battery voltage | Battery current |

#### 3.1.6. EPS switch status

EPS switch status shows whether the voltage and current values for each of EPS switches are normal or not. "0" is normal, and "1" shows error. Table 9 shows the meaning of each bit.

| 15bit<br>(MSB) | 14bit    | 13bit    | 12bit    | 11bit    | 10bit    | 9bit     | 8bit     |
|----------------|----------|----------|----------|----------|----------|----------|----------|
| switch 1       | switch 1 | switch 2 | switch 2 | switch 5 | switch 5 | switch 6 | switch 6 |
| voltage        | current  | voltage  | current  | voltage  | current  | voltage  | current  |

Table 9 EPS switch status

| 7bit     | 6bit     | 5bit     | 4bit     | 3bit     | 2bit     | 1bit      | 0bit<br>(LSB) |
|----------|----------|----------|----------|----------|----------|-----------|---------------|
| switch 7 | switch 7 | switch 8 | switch 8 | switch 9 | switch 9 | switch 10 | switch 10     |
| voltage  | current  | voltage  | current  | voltage  | current  | voltage   | current       |

Additionally, Table 10 shows the components connected to each EPS switch.

| EPS<br>Switch# | Connected component                   | EPS<br>Switch# | Connected component           |
|----------------|---------------------------------------|----------------|-------------------------------|
| 1              | Motor for extensible mast (12V 1.5A)  | 6              | LED for cameras (5V)          |
| 2              | 12V power supply                      | 7              | 5.8GHz transmitter power (5V) |
| 3              | Battery voltage                       | 8              | MDC power (3.3V, 4A)          |
| 4              | Battery voltage                       | 9              | Nichrome cutter in Deployable |
|                |                                       |                | membrane unit (3.3V, 4A)      |
| 5              | Extensible camera unit power (5V, 4A) | 10             | Nichrome cutter for UHF/VHF   |
|                |                                       |                | deployable antenna (3.3V, 4A) |

Table 10 Details of EPS switches

# 3.1.7. EPS bus status

EPS bus status shows whether the voltage and current values for 3.3V BUS, 5V BUS, and 12V BUS, are normal or not. "0" is normal, and "1" shows error. Table 11 shows the meaning of each bit.

Table 11 EPS bus status

| 7bit(MSB) | 6bit | 5bit     | 4bit     | 3bit    | 2bit    | 1bit    | Obit(LSB) |
|-----------|------|----------|----------|---------|---------|---------|-----------|
|           |      | 3.3V BUS | 3.3V BUS | 5V BUS  | 5V BUS  | 12V BUS | 12V BUS   |
|           |      | voltage  | current  | voltage | current | voltage | current   |

# 3.1.8. Satellite mode

Table 12 shows the information in this data section. There are three satellites modes, depending upon battery voltage. Table 13 explains each modes in detail.

| 7bit(MSB) | 6bit     | 5bit   | 4bit | 3bit              | 2bit | 1bit   | Obit(LSB) |  |
|-----------|----------|--------|------|-------------------|------|--------|-----------|--|
|           | Satollit | a modo |      | SEP switch RBF sw |      | switch |           |  |
|           | Satemite | e moue |      | sta               | tus  | sta    | atus      |  |

Table 12 Data contents of "satellite mode"

| Satellite mode | Satellite mode contents                                     |
|----------------|-------------------------------------------------------------|
| Nominal mode   | Mode for nominal operation.                                 |
|                | This mode is used when battery voltage is relatively low.   |
|                | To reduce power consumption, only minimal communication     |
| a              | functions are active, and the battery voltage is resumed.   |
| Saving mode    | CW downlink data format is unchanged from the nominal       |
|                | mode; however, OBC is turned off in this mode. As a result, |
|                | the data from OBC are not updated in this mode.             |
|                | This mode is used when battery voltage is critically low.   |
|                | Only PIC microcomputers are active and all most all the     |
| Survival mode  | other devices are turned off. In this mode, CW data         |
|                | transmission is not implemented. This mode concentrates     |
|                | charging the battery.                                       |

 Table 13
 Explanation of each satellite mode

Table 5 shows the data representation for "satellite mode" in Table 14.

| Satellite mode | 7 bit | 6bit | 5bit | 4bit |
|----------------|-------|------|------|------|
| Nominal mode   | 0     | 1    | 0    | 1    |
| Saving mode    | 0     | 1    | 1    | 0    |
| Survival mode  | 1     | 0    | 1    | 0    |

Table 14 Satellite mode representation

"SEP" and "RBF" in Table 12 are the switches, switched according to the satellite mode. SEP switches ON/OFF of the bus power line from EPS. RBF switches ON/OFF between EPS and battery. Therefore, if the switches function normally, both SEP/RBF are ON in Nominal mode; whereas only SEP is on in Saving mode and Survival mode. In binary number (BIN), the switch status is 0b10 when a switch is ON; and it is 0b01 when a switch is OFF. Table 15 summarize this.

| Satellite mode | SEP | RBF | Data (BIN) | Data (HEX) |
|----------------|-----|-----|------------|------------|
| Nominal mode   | ON  |     | 0b01011010 | 0x5A       |
| Saving mode    | OFF | ON  | 0b01100110 | 0x66       |
| Survival mode  | OFF |     | 0b10100110 | 0xA6       |

Table 15 Summary of "satellite mode" data

### 3.1.9. SAP (Solar Array Panel) voltage and current

Table 12 SAP (Solar Array Panel) voltage and current

| 番号   | Byte    | 内容          | byte 数 |
|------|---------|-------------|--------|
| (i)  | #17-#18 | SAP voltage | 2      |
| (ii) | #19-#20 | SAP current | 2      |

#### (i) SAP voltage

SAP voltage value is calculated by Eq. (3). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA". (The same process is also required in (ii).)

Voltage 
$$[V] = 0.008993157 \times DATA$$
 (3)

#### (ii) SAP current

SAP current voltage value is calculated by Eq. (4).

Current 
$$[A] = 0.014662757 \times DATA$$
 (4)

### 3.1.10. SAP 1~5 power

This shows the SAP power. If this is above the reference value, 0x0200, the SAP generates some power. The relation between SAP numbers and the panel directions is (1, 2, 3, 4, 5) = (+X, -X, +Y, -Y, -Z).

### 3.1.11. SAP 1~4 current

| byte    | 内容                 | byte 数 |
|---------|--------------------|--------|
| #31-#32 | SAP 1 (+X) current | 2      |
| #33-#34 | SAP 2 (-X) current | 2      |
| #35-#36 | SAP 3 (+Y) current | 2      |
| #37-#38 | SAP 4 (-Y) current | 2      |

Current value for each SAP is calculated by Eq. (5). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA".

Current 
$$[A] = 0.0009775 \times DATA$$
 (5)

### 3.1.12. Temperature data for each component

Figure 3 and Table 18 show the locations of temperature sensors (1)-(14).



Figure 3 Location of temperature sensors

| Number | byte    | 内容                                | byte 数 |
|--------|---------|-----------------------------------|--------|
| (1)    | #39-#40 | EPS temperature                   | 2      |
| (2)    | #41     | OBC temperature 0                 | 1      |
| (3)    | #42     | OBC temperature 1                 | 1      |
| (4)    | #43     | 5.8GHz amplifier temperature      | 1      |
| (5)    | #44     | 5.8GHz radiator plate temperature | 1      |
| (6)    | #45     | TX temperature                    | 1      |
| (7)    | #46     | RX temperature                    | 1      |
| (8)    | #47-#48 | BAT motherboard temperature       | 2      |
| (9)    | #49     | CI Board (DC-DC)                  | 1      |

| (10) | #50         | Side panel +Y         | 1 |
|------|-------------|-----------------------|---|
| (11) | #51         | Side panel +X         | 1 |
| (12) | #52         | Side panel –X         | 1 |
| (13) | <b>#5</b> 3 | OBC (GPU) temperature | 1 |
| (14) | #54         | Side panel –Y         | 1 |

### (1) EPS temperature

The temperature value is calculated by Eq. (6). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA". (The same process is required for all (1)-(14).)

EPS temperature 
$$\begin{bmatrix} \circ C \end{bmatrix} = (0.372434 \times DATA) - 273.15$$
 (6)

(2)&(3) OBC temperature

OBC temperature is given by Eq. (7).

OBC temperature 
$$\begin{bmatrix} \circ C \end{bmatrix} = \frac{DATA \times 2493.0}{1023} - 424$$
 (7)

(8) BAT (motherboard) temperature

BAT (motherboard) is given by Eq. (8).

$$X = \frac{330 \times DATA}{1024 - DATA}$$
  
Temperature  $\begin{bmatrix} \circ C \end{bmatrix} = \frac{1.0}{\frac{1.0}{4390.0} \log \frac{X}{100.0} + \frac{1.0}{25.0 + 273.15}} - 273.15$  (8)

Others (4)-(7), (10)-(14)

These temperatures are given by Eq. (9).

$$X = \frac{330 \times DATA}{255 - DATA}$$
Temperature [°C] =  $\frac{1.0}{\frac{1.0}{4390.0} \log \frac{X}{100.0} + \frac{1.0}{25.0 + 273.15}} - 273.15$ 
(9)

### 3.1.13. Satellite bus's acceleration X~Z

| byte    | 内容                       | byte 数 |
|---------|--------------------------|--------|
| #55-#56 | Satellite acceleration X | 2      |
| #57-#58 | Satellite acceleration Y | 2      |
| #59-#60 | Satellite acceleration Z | 2      |

Table 15Satellite bus acceleration

The acceleration value is calculated by Eq. (10). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA".

$$X = 2 \times 9.8 \times \frac{DATA}{32767}$$
(10)

### 3.1.14. Satellite bus's angular velocity X~Z

Table 16 Satellite bus angular velocity

| byte    | 内容                 | byte 数 |
|---------|--------------------|--------|
| #61-#62 | Angular velocity X | 2      |
| #63-#64 | Angular velocity Y | 2      |
| #65-#66 | Angular velocity Z | 2      |

The angular velocity value is calculated by Eq. (11). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA".

$$X = 500 \times \frac{DATA}{32767} \tag{11}$$

### 3.1.15. Raspberry Pi latest executed command ID

RasPi's command also has command IDs. And the latest executed command ID is downloaded here.

### 3.1.16. RasPi mode and command execution status, LED status

As shown in Table 21, RasPi's mode is in 7-6 bit, command execution status is in 5-4 bit, and LED status is in 3-0 bit.

| 7bit(MSB)         | 6bit | 5bit         | 4bit | 3bit   | 2bit   | 1bit   | Obit(LSB) |
|-------------------|------|--------------|------|--------|--------|--------|-----------|
| 00: initial value |      | 00 : STANDBY |      | LED 4  | LED 3  | LED 2  | LED 1     |
| 01: executing     |      | 01 : RUN     |      | 0: OFF | 0: OFF | 0: OFF | 0: OFF    |
| 10: error         |      | 10 : STOP    |      | 1 : ON | 1:ON   | 1:ON   | 1 : ON    |

Table 17 Details about Raspberry Pi data

### 3.1.17. EPS switches 1-10's voltage and current

### Table 18 EPS voltage and current for each switches

| Number | Byte                     | Contents              | byte |
|--------|--------------------------|-----------------------|------|
| (1)    | #69-#70                  | EPS switch 1 voltage  | 2    |
| (2)    | #71-#72                  | EPS switch 1 current  | 2    |
| (3)    | <b>#7</b> 3 <b>-#</b> 74 | EPS switch 2 voltage  | 2    |
| (4)    | #75-#76                  | EPS switch 2 current  | 2    |
| (5)    | #77-#78                  | EPS switch 5 voltage  | 2    |
| (6)    | #79-#80                  | EPS switch 5 current  | 2    |
| (7)    | #81-#82                  | EPS switch 6 voltage  | 2    |
| (8)    | #83-#84                  | EPS switch 6 current  | 2    |
| (9)    | #85-#86                  | EPS switch 7 voltage  | 2    |
| (10)   | #87-#88                  | EPS switch 7 current  | 2    |
| (11)   | #89-#90                  | EPS switch 8 voltage  | 2    |
| (12)   | #91-#92                  | EPS switch 8 current  | 2    |
| (13)   | <b>#</b> 93 <b>-#</b> 94 | EPS switch 9 voltage  | 2    |
| (14)   | #95-#96                  | EPS switch 9 current  | 2    |
| (15)   | #97-#98                  | EPS switch 10 voltage | 2    |
| (16)   | #99-#100                 | EPS switch 10 current | 2    |

The equations to convert (1)-(16) values to physical data are shown below.

(1), (3) EPS voltage (switch 1, 2)

The voltage value is calculated by Eq. (12). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA". (This process is required for all (1)-(16).)

$$EPS voltage [V] = 0.01349 \times DATA$$
(12)

(4), (7), (9) EPS voltage (switch 5, 6, 7)

The voltage value is calculated by Eq. (13).

$$EPS \text{ voltage } [V] = 0.005865 \times DATA \tag{13}$$

(11), (13), (15) EPS voltage (switch 8, 9, 10)

The voltage value is calculated by Eq. (14).

$$EPS voltage [V] = 0.004311 \times DATA$$
(14)

(2), (4), (6), (8), (10), (12), (14), (16) EPS current (switch 1, 2, 5, 6, 7, 8, 9, 10)

The voltage value is calculated by Eq. (15).

 $EPS current [A] = 0.001328 \times DATA$ (15)

#### 3.1.18. EPS 3.3V BUS voltage and current

| Table 19 EPS 3.3V BUS voltage and curre |
|-----------------------------------------|
|-----------------------------------------|

| Number | byte      | Content              | byte |
|--------|-----------|----------------------|------|
| (1)    | #101-#102 | EPS 3.3V BUS voltage | 2    |
| (2)    | #103-#104 | EPS 3.3V BUS current | 2    |

#### (1) EPS 3.3V BUS voltage

The voltage value is calculated by Eq. (16). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA". (This process is also required in (2).)

$$Voltage [V] = 0.003988 \times DATA$$
(16)

#### (2) EPS 3.3V BUS current

The current value is calculated by Eq. (17).

$$Current [A] = 0.005237 \times DATA$$
(17)

#### 3.1.19. EPS 5V BUS voltage and current

Table 20 EPS 5V BUS voltage and current

| Number | byte      | Content            | byte |
|--------|-----------|--------------------|------|
| (1)    | #105-#106 | EPS 5V BUS voltage | 2    |
| (2)    | #107-#108 | EPS 5V BUS current | 2    |

#### (1) EPS 5V BUS voltage

Again, the voltage value is calculated by Eq. (18). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into

"DATA". (This process is also required in (2).)

$$Voltage [V] = 0.005865 \times DATA$$
(18)

(2) EPS 5V BUS current

The current value is calculated by Eq. (19).

$$Current [A] = 0.005237 \times DATA$$
(19)

### 3.1.20. EPS 12V BUS voltage and current

#### Table 21 EPS 12V BUS voltage and current

| Number | byte      | Content             | byte |
|--------|-----------|---------------------|------|
| (1)    | #109-#110 | EPS 12V BUS voltage | 2    |
| (2)    | #111-#112 | EPS 12V BUS current | 2    |

#### (1) EPS 12V BUS voltage

The voltage value is calculated by Eq. (20). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA". (This process is also required in (2).)

$$Voltage [V] = 0.01349 \times DATA$$
(20)

(2) EPS 12V BUS current

The current value is calculated by Eq. (21).

$$Current [A] = 0.00207 \times DATA$$
(21)

#### 3.1.21. BCR1~3 voltage

| Table 22   BCR 1~3 voltage |               |        |  |
|----------------------------|---------------|--------|--|
| byte                       | 内容            | byte 数 |  |
| #113-#114                  | BCR 1 voltage | 2      |  |
| #115-#116                  | BCR 2 voltage | 2      |  |
| #115-#116                  | BCR 3 voltage | 2      |  |

BCR (Battery Charge Regulator) voltages are calculated by Eq. (22). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA".

$$Voltage [V] = 0.0249 \times DATA$$
(22)

# 3.1.22. SAP 5 (-Z) current

SAP (Solar Array Panel) 5 (-Z)'s current is given by Eq. (23). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA".

Current [A] = 
$$0.0009775 \times DATA$$
 (23)

### 3.1.23. 5.8GHz 12V voltage

The voltage value is calculated by Eq. (24). The obtained 2 byte hexadecimal number (HEX) should be converted to a decimal number (DEC); then substituted into "DATA".

Current [A] = 
$$3.3 \times \frac{DATA}{255} \times \frac{78}{10}$$
 (24)

# 3.2. Mission data downlink

# 3.2.1. Picture data downlink

Table 27 shows Picture data downlink format.

| Content       | Value                        |
|---------------|------------------------------|
| Haadan        | 0xFF                         |
| neader        | 0x20                         |
|               | 0xFF                         |
|               | 0xD8                         |
| Picture data  | •                            |
|               | •                            |
|               | •                            |
|               | 0xFF                         |
|               | 0xD9                         |
|               | Year (last 2 digits of A.D.) |
|               | Month                        |
| Shooting date | Day                          |
| in HEX        | Hour                         |
|               | Minute                       |
|               | Second                       |
| Footer        | 0xFF                         |

| UXIL |
|------|
|------|

### 3.2.2. IMU data downlink

<u>IMU data</u> consists of acceleration values and angular velocity values. Table 28 shows the data format. Data should be converted by the same method described in 3.1.13 and 3.1.14. But please note that the acceleration value is little-endian, whereas the angular velocity value is big-endian.

| Contracto        | Value            |                                 |
|------------------|------------------|---------------------------------|
| Contents         | Value            |                                 |
|                  | Year             |                                 |
|                  | Month            |                                 |
| Start time       | Day              |                                 |
| 6 byte           | Hour             |                                 |
|                  | Minute           |                                 |
|                  | Second           |                                 |
| Garbage 12byte   | $0 \mathrm{xFF}$ |                                 |
| Norma han Shorta | 0x0000-          |                                 |
| Number 2byte     | 0xFFFF           |                                 |
| X acceleration   | 0x0000-          |                                 |
| 2byte            | 0xFFFF           |                                 |
| Y acceleration   | 0x0000-          |                                 |
| 2byte            | 0xFFFF           |                                 |
| Z acceleration   | 0x0000-          |                                 |
| 2byte            | 0xFFFF           | Repeated for number of compline |
| Temperature      | 0x0000-          | Monouroment rete:               |
| 2byte            | 0xFFFF           | Measurement rate.               |
| X angular        | 0x0000-          | Mast extension 50112            |
| velocity 2byte   | 0xFFFF           | Membrane deployment 150Hz       |
| Y angular        | 0x0000-          |                                 |
| velocity 2byte   | 0xFFFF           |                                 |
| Z angular        | 0x0000-          |                                 |
| velocity 2byte   | 0xFFFF           |                                 |
|                  | Year             |                                 |
| Ena time         | Month            |                                 |
| 6 byte           | Day              |                                 |

Table28 IMU data format

|                | Hour             |
|----------------|------------------|
|                | Minute           |
|                | Second           |
| Garbage 12byte | $0 \mathrm{xFF}$ |

#### 3.2.3. Thin-film solar cell I-V properties

On the multi-functional membrane, thin-film solar cells are attached. The current and voltage (I-V) can be measured.

Table29 Thin film solar cell I-V properties

| 内容               | 値             |
|------------------|---------------|
| Voltage          | 00000-0EEEE   |
| 2byte            | 0x0000-0xffff |
| Current          | 00000-0EEEE   |
| 2byte            | 0x0000-0xffff |
| Garbage<br>4byte |               |

# 3.2.3.1. Thin-film solar cell's voltage conversion

The voltage is in little-endian. Table 30 shows the data structure, and Eq. (25) shows the conversion.

| Table 30     | bit structure |
|--------------|---------------|
| 15bit - 4bit | 3bit - 0bit   |
| Voltage      | 0: positive   |
| data         | 1: negative   |

$$Voltage [V] = 3.3 \times \frac{DATA}{4095} \times 10$$
(25)

# 3.2.3.2. Thin-film solar cell's current conversion

The current is in little-endian. Table 31 shows the data structure, and Eq. (26) shows the conversion.

| Table 31     | bit structure |
|--------------|---------------|
| 15bit - 4bit | 3bit - 0bit   |

| Current | 0: positive |
|---------|-------------|
| data    | 1: negative |

Current 
$$[A] = 3.3 \times \frac{DATA}{4095} \times \frac{1}{10}$$
 (26)

### 3.2.4. Encoder data

Extensible mast is extended by a motor with an encoder. The data structure is shown in Table 32. 2 byte HEX number (two's compliment) is converted to DEC number. Mast contraction is positive, and extension is negative. The sample rate is once per second. Thus the maximum duration period is 16 s. The data is <u>little-endian</u>.

| Contents | Value         |
|----------|---------------|
| Count 1  | 0x0000-0xFFFF |
| Count 2  | 0x0000-0xFFFF |
| Count 3  | 0x0000-0xFFFF |
| •        | •             |
| •        | •             |
| •        | •             |
| Count 16 | 0x0000-0xFFFF |

Table 32Encoder data format

(End of document)

© Tokyo Tech, 2019. All rights reserved. Email: <u>report [at] origami.titech.ac.jp</u>